Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38426124

RESUMEN

Purpose: Advanced practice (AP) in radiation therapy (RT) is being implemented around the globe. In an effort to advance the understanding of the similarities and differences in APRT roles in Ontario, Canada, a community of practice (CoP) sought ways to provide quantitative data on the nature of APRT clinical activities and the frequency with which these activities were being executed. Methods: In 2017, a consensus building project involving 20 APRTs and 14 radiation therapy (RT) department managers in Ontario was completed to establish a mechanism to quantify APRTs' clinical impact. In Round 1 & 2, expert feedback was gathered to generate an Advanced Practice (AP) Activity List. In Round 3: 20 APRTs completed an online survey to assess the importance and applicability of each AP Activity to their role using Likert scale (0-5). A final AP Activity List & Definitions was generated. Results & discussion: Round 1: Forty-seven AP activities were identified. Round 2: 3/14 RT managers provided 145 feedback statements on Round 1 AP Activity List. The working group used RT managers' feedback to clarify AP activities and definitions, specifically merging 33 unique AP activities to create 11 inclusive AP activities and eliminating 8 activities identified from Round 1. The most inclusive AP activity created was #1 New Patient Consultation, this AP Activity is merged from 7 unique AP activities. Incorporating RT managers' feedback with the internal AP clinical workload lists from 2 Ontario cancer centres resulted in a revised AP Activity List with 20 AP inclusive activities. Round 3: 14/20 APRTs provided Likert scores on this revised list. The most applicable AP activities (mean score) were #16 Technical Consultation (4.0), #15 Contouring Target Volume (3.8) and #2 Planning Consultation (3.8); the least applicable was #18 MR Applicator Assessment (0.9). Conclusions: This is the first systematic attempt to build consensus on AP clinical activities. Non-clinical APRT activities related to research, education, innovation, and program development were not in the scope of this project. The Final AP Activity List & Definitions serves as a framework that allows standardized and continuous monitoring of AP clinical activities and impact.

2.
Healthc Q ; 26(2): 37-42, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37572070

RESUMEN

In 2021, Ontario Health (Cancer Care Ontario) introduced a quality-based procedure model for the funding of radiation treatment (RT) in Ontario. This model ties reimbursement to patient care activities, ensuring equity and transparency in funding. Over 200 RT interprofessionals (oncologists, therapists and physicists) participated on 22 expert panels to establish or identify 288 evidence-based RT protocols and 672 quality expectations (QEs) to optimally deliver RT, which eventually led to the micro-costing of all protocols. Iterative review is required to ensure updated techniques and identify evolving standards of care, thereby providing the highest quality of RT care to Ontarians.


Asunto(s)
Consenso , Humanos , Ontario , Costos y Análisis de Costo
3.
Adv Mater ; 33(10): e2005647, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33543809

RESUMEN

Failure of materials and structures is inherently linked to localized mechanisms, from shear banding in metals, to crack propagation in ceramics and collapse of space-trusses after buckling of individual struts. In lightweight structures, localized deformation causes catastrophic failure, limiting their application to small strain regimes. To ensure robustness under real-world nonlinear loading scenarios, overdesigned linear-elastic constructions are adopted. Here, the concept of delocalized deformation as a pathway to failure-resistant structures and materials is introduced. Space-tileable tensegrity metamaterials achieving delocalized deformation via the discontinuity of their compression members are presented. Unprecedented failure resistance is shown, with up to 25-fold enhancement in deformability and orders of magnitude increased energy absorption capability without failure over same-strength state-of-the-art lattice architectures. This study provides important groundwork for design of superior engineering systems, from reusable impact protection systems to adaptive load-bearing structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...